Parallel Chains, Delayed Rejection and Reversible Jump MCMC for Object Recognition

نویسندگان

  • M. Harkness
  • P. Green
چکیده

We tackle the problem of object recognition using a Bayesian approach. A marked point process [1] is used as a prior model for the (unknown number of) objects. A sample is generated via Markov chain Monte Carlo (MCMC) techniques using a novel combination of Metropolis-coupled MCMC (MCMCMC) [2] and the Delayed Rejection Algorithm (DRA) [4]. The method is illustrated on some synthetic data containing simple geometrical objects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient reversible jump MCMC for Bayesian object recognition

Computational efficiency is a bottleneck for the use of stochastic geometry models in high-level Bayesian object recognition. In this paper we examine various approaches to reversible jump MCMC that lead to higher acceptance rates than the traditional approach of using a uniform proposal density. This is achieved by exploiting information about the posterior gained through a deterministic image...

متن کامل

Population-based reversible jump Markov chain Monte Carlo

We present an extension of population-based Markov chain Monte Carlo to the transdimensional case. A major challenge is that of simulating from highand transdimensional target measures. In such cases, Markov chain Monte Carlo methods may not adequately traverse the support of the target; the simulation results will be unreliable. We develop population methods to deal with such problems, and giv...

متن کامل

Monte Carlo Methods and Bayesian Computation: MCMC

Markov chain Monte Carlo (MCMC) methods use computer simulation of Markov chains in the parameter space. The Markov chains are defined in such a way that the posterior distribution in the given statistical inference problem is the asymptotic distribution. This allows to use ergodic averages to approximate the desired posterior expectations. Several standard approaches to define such Markov chai...

متن کامل

Bayesian Inference on Principal Component Analysis Using Reversible Jump Markov Chain Monte Carlo

Based on the probabilistic reformulation of principal component analysis (PCA), we consider the problem of determining the number of principal components as a model selection problem. We present a hierarchical model for probabilistic PCA and construct a Bayesian inference method for this model using reversible jump Markov chain Monte Carlo (MCMC). By regarding each principal component as a poin...

متن کامل

Parallel Spatial Pyramid Match Kernel Algorithm for Object Recognition using a Cluster of Computers

This paper parallelizes the spatial pyramid match kernel (SPK) implementation. SPK is one of the most usable kernel methods, along with support vector machine classifier, with high accuracy in object recognition. MATLAB parallel computing toolbox has been used to parallelize SPK. In this implementation, MATLAB Message Passing Interface (MPI) functions and features included in the toolbox help u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000